
TICA and the VAMP-score in Situations
with Symmetry

Phillip Bement

September 30, 2025

1 Introduction

Given sufficient training data about the (stochastic) dynamics of some physical sys-
tem, TICA1 (short for “time-lagged independent component analysis”) and VAMP-nets2

(“VAMP” is short for “variational approach to markov processes”) provide a method
to find slowly changing functions of the system coordinates. This is useful because the
slowest-changing aspects of the system’s state are the most useful for predicting what
it will do far in the future, and often have scientific significance. (For example, some
proteins have two alternate conformations and a function that indicates which one it
occupies tends to be slowly-changing.)

1Molgedey, L. and Schuster, H. G., Separation of a mixture of independent signals using time delayed
correlations. 10.1103/PhysRevLett.72.3634

2Hao Wu and Frank Noé, Variational approach for learning Markov processes from time series data.
arxiv.org/abs/1707.04659

1

https://link.aps.org/doi/10.1103/PhysRevLett.72.3634
https://arxiv.org/abs/1707.04659


VAMP-nets learn such slowly-changing functions by optimizing a VAMP-score, while
the simpler TICA technique finds slowly-changing linear combinations of a fixed set of
basis functions. Both methods are based on the mathematical formalism of the Koopman
operator, a linear operator on functions that captures the dynamics of a physical system.
This blog-post-in-a-pdf contains notes on how the Koopman operator interacts with

symmetry, and how TICA and the VAMP-score can be generalized to physical systems
that are symmetric in some way. We’ll find that Koopman eigenfunctions are equivariant
under the symmetry and by applying prior knowledge that our system is symmetric in
some way, we can obtain estimates of covariances with less statistical noise.

1.1 The Koopman Operator

It’s probably advisable for a reader who is new to the Koopman operator to read a true
introduction to the subject before returning to this post3. But, to recap: The Koopman
operator maps functions at one time to their expected values at a future time. In other
words, the Koopman operator K for a given lag time ∆t is a linear operator on functions
ψ of the system coordinates X defined such that:

(Kψ)(Xt) = Ep(Xt+∆t|Xt) [ψ(Xt+∆t)]

where p is the conditional probability distribution of later states conditional on earlier
states implied by the dynamics of the system. For a system that obeys detailed-balance4

with equilibrium distribution q(X), the Koopman operator is self-adjoint under the inner
product

⟨ϕ, ψ⟩ = Eq(X) [ϕ(X)∗ψ(X)]

From this, we find that the operator has real eigenvalues and associated eigenfunc-
tions. These eigenvalues and eigenfunctions characterize the dynamics of the system.
Eigenvalues are ≤ 1 and larger eigenvalues are associated with aspects of the system
with slower dynamics. There is always an eigenvalue of 1, which is associated with
functions that are constant (i.e. scalings of ψ(X) = 1).

The Koopman operator formalism also applies to systems that do not obey detailed
balance, or even have an equilibrium distribution. But it’s simpler if we focus here on
system that do.

1.2 VAMP-nets and TICA

It’s usually important that machine learning methods can fit in a computer, so we’d like
to find finite-dimensional approximations of the Koopman operator. If we can only pick

3While we’re talking about pre-reqs, you should also know basic representation theory. Just unitary
irreps and Schur’s lemma is fine, we won’t need to talk about characters here.

4Detailed balance means that not only does the system have an equilibrium distribution q, but at
equilibrium each flow of probability mass from state X to X′ is balanced by an equal flow in the
other direction. So p and q satisfy: p(X′|X)q(X) = p(X|X′)q(X′) for any two states X,X′.

2



a finite number N of basis functions, we want them to be the eigenfunctions with the N
largest eigenvalues.
TICA is given a fixed set of basis functions, and finds an approximate Koopman

operator on the associated subspace. How good an approximation this is depends heavily
on how well the user chose the input basis functions. TICA will at least tell us what
linear combinations are the slowest-changing, though.
VAMP-nets instead try to learn a set of basis functions, with the loss function provided

by the VAMP-score. This is less dependent on choosing a good set of basis functions to
start out with, but it does involve training a neural net.

1.3 Symmetry

A physical system having symmetry means that there is some group G describing that
symmetry, and that this group acts on the system coordinates: i.e. we can write gX
for some g ∈ G, and this will give a transformed system state. This is not sufficient,
though. We also need the dynamics to respect the symmetry, i.e. for any g ∈ G:

p(gXt+∆t|gXt) = p(Xt+∆t|Xt)

This in turn implies that the equilibrium distribution q is also symmetric:

q(gX) = q(X)

If a system has symmetry, we can immediately know some things about the spectrum
of its Koopman operator.

1.4 Eigenspaces and Symmetry

For any g ∈ G, we can define a linear operator Dg that acts on functions of system
coordinates and is equivalent to applying the symmetry g:

(Dgψ)(X) = ψ(gX)

So D is a representation of G. A very reducible, infinite dimensional representation,
but a representation nonetheless. This provides our first hint that representation theory
will be important here. After all, if the entire space of functions transforms by a rep-
resentation of G, then surely there are finite-dimensional subspaces that transform by
irreps of G. And yes, this is true, at least in most naturally occurring cases.
How about dynamics? If the physics is symmetric under the action of G, then applying

a symmetry g before or after time-evolution is equivalent, so we have:

∀g ∈ G : DgK = KDg i.e. ∀g ∈ G : [Dg,K] = 0

so if ψ is an eigenstate of K with Kψ = λψ, then

KDgψ = DgKψ = λDgψ

3



i.e. Dgψ is also a member of the eigenspace associated with λ. So eigenspaces must
transform by a representation of G. In quantum mechanics, we learn that energy
eigenspaces also transform by representations of symmetries whose actions commute
with the Hamiltonian H. So this is kind-of the same. Anyway, because TICA and the
VAMP-score are children of the Koopman operator, they inherit some nice additional
properties from the fact that [K,Dg] = 0.

1.5 Plan for the rest of this post

This post will show how to generalize TICA and the VAMP-score to situations with
some kind of symmetry. We’ll get there in a series of steps. First, we’ll provide analytic
examples where we find Koopman eigenfunctions of a simple system, the 1d Ornstein-
Uhlenbeck process. Then we’ll do the same for the 3d Ornstein-Uhlenbeck process,
which has SO(3) symmetry. This will show us how the Koopman operator looks when
the physical system it describes is symmetric, and demonstrate that non-trivial irreps
are indeed important and there are slow-changing equivariant5 functions.
We’ll then prove some results about equilibrium and time-lagged covariances of equiv-

ariant functions.
Then it will be clear how TICA needs to be modified and from there it is a small

further jump to the VAMP-score. We’ll do a numeric demo of this symmetric TICA
on a system that has SO(3) symmetry, but is non-linear so that its set of Koopman
eigenfunctions is not possible to find analytically. Finally, we’ll mention some relevant
symmetry groups besides SO(3) that might be commonly useful.

2 Koopman Eigenfunctions of the Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is one of the simplest possible stochastic processes.
Sample trajectories are shown in figure 1. It describes a particle undergoing Brownian
motion in a 1d harmonic potential U(x) = 1

2x
2.

Alternately, with the appropriate non-dimensionalization, we can describe the fluctu-
ation of charge on the capacitor in fig 2 as an Ornstein-Uhlenbeck process. In any case,
the process is described by the following stochastic differential equation:

dx = −xdt+ dW

2.1 Infinitesimal Generator

In this subsection we compute the infinitesimal generator for an Ornstein-Uhlenbeck
process. You can skip the derivation and just take the final expression for the generator
on faith, if you like.
If we define the operator G by:

5An equivariant function is a vector-valued function of system coordinates that transforms under a
representation of the group G. i.e. if ψ(gX) = Dgψ(x) for some representation D, then ψ is an
equivariant function.

4



Figure 1: Some sample trajectories of the Ornstein-Uhlenbeck process.
Geek3, CC BY-SA 4.0, via Wikimedia Commons

(Gψ)(xt) = lim
δt→0

∫
dxt+δt p(xt+δt|xt)

ψ(xt+δt)− ψ(xt)

δt

then for a lag time of ∆t,

K = exp (G∆t)

i.e. the operator G generates K. In particular, this implies that the two operators
have the same eigenvectors. So our next task is to find the eigenvectors of G for the
Ornstein-Uhlenbeck process.
In the limit of small δt:

xt+δt = xt − xt δt+ ϵ
√
δt

with ϵ ∼ N (0, 1). Plugging xt+δt into some arbitrary function ψ gives:

(Gψ)(xt) =
∫
e−ϵ

2/2

√
2π

dϵ
ψ
(
xt − xt δt+ ϵ

√
δt
)
− ψ(xt)

δt

we can now use the 2nd order Taylor expansion of g(x):

ψ(x+ δx) = ψ(x) + ψ′(x)δx+
1

2
ψ′′(x)δx2

and plug this in to our expression above and only keep terms up to order δt:

5

https://creativecommons.org/licenses/by-sa/4.0


Figure 2: The Ornstein-Uhlenbeck process describes the fluctuation of charge over time
on the capacitor in this circuit due to thermal fluctuations (Johnson-Nyquist
noise).

(Gψ)(xt) =
∫
e−ϵ

2/2

√
2π

dϵ
ψ′(xt)

(
−xt δt+ ϵ

√
δt
)
+ 1

2ψ
′′(xt)

(
ϵ2 δt

)
δt

The ϵ
√
δt is odd, so it disappears and after doing the Gaussian integrals on the other

two terms we’re left with:

(Gψ)(x) = −x ψ′(x) +
1

2
ψ′′(x)

or, as an operator:

G = −x ∂x +
1

2
∂xx

2.2 Eigenfunctions

We’d like to solve the following eigenvalue problem:

Gψ = λψ

−x ∂xψ(x) +
1

2
∂xxψ(x) = λ ψ(x)

This equation can be solved by using the Hermite polynomials (see Appendix), which
obey:

−x∂x Hen(x) + ∂xx Hen(x) = −n Hen(x)

6



for n = 0, 1, 2, 3 . . . . The first few Hermite polynomials are:
He0(x) = 1 He4(x) = x4 − 6x2 + 3

He1(x) = x He5(x) = x5 − 10x3 + 15x

He2(x) = x2 − 1 He6(x) = x6 − 15x4 + 45x2 − 15

He3(x) = x3 − 3x . . .

To solve the equation given above, we rescale x by 1/
√
2. Then the eigenfunctions of

G are given by:

ψn(x) = Hen

(
x√
2

)
with eigenvalue −n. As a result, K has the same eigenfunctions, with eigenvalues:

Kψn = exp(−n∆t)ψn

2.3 3d Ornstein-Uhlenbeck Process

Figure 3: Scaled 3d Ornstein-Uhlenbeck process. The particle was initially started far
away from the bottom of the potential well.
Shiyu Ji, CC BY-SA 4.0, via Wikimedia Commons

We can generalize the Ornstein-Uhlenbeck process to a 3d version by simply using
a 3d rotationally symmetric harmonic potential U(x) = 1

2x
2 instead of a 1d potential.

7

https://creativecommons.org/licenses/by-sa/4.0


The equation of motion is:

dx = −xdt+ dW

By a similar derivation to above, the infinitesimal generator for this system is:

G = −x · ∇+
1

2
∇2

Figure 4: Plot of the level sets He[2,2,1](x)e
− 1

2
x2

= {0.1,−0.1}. The [2, 2, 1] 3d-Hermite

polynomial is multiplied by a e−
1
2
x2

factor (proportional to the equilibrium
distribution) to make the visualization clearer.

To find the eigenfunctions of this operator, we can use the 3d Hermite polynomials
(see Appendix). They satisfy a 3d version of the Hermite differential equation:

−x · ∇Hen(x) +∇2Hen(x) = −(n0 + n1 + n2)Hen(x)

Similar to before, the Koopman eigenfunctions are given by:

ψn(x) = Hen

(
x√
2

)
with eigenvalues:

Kψn = exp(−(n0 + n1 + n2)∆t)ψn

So far, we have found the eigenvalues/eigenfunctions. In accordance with the previous
discussion, the eigenspaces should correspond to equivariant functions, i.e. functions that

8



transform under representations of SO(3). So we should probably quickly check what
the irreps of SO(3) are.

2.4 Representation Theory of SO(3)

Skipping directly to the answer: The space of traceless fully symmetric tensors with l
indices transforms according to a 2l + 1-dimensional irrep of SO(3).
First, we should check that the dimensions of this vector space add up correctly. A

tensor Ti1...il has 3n elements. If it is fully symmetric, then swapping any two indices
leaves the tensor invariant. This fact reduces the number of truly independent elements.
Thanks to reordering, the truly independent elements are indexed by multisets of size l
chosen from {0, 1, 2}. The number of such multisets is given by:(

l + 2

2

)
=

(l + 2)(l + 1)

2

(This is a well-known fact in combinatorics. To save you from looking it up, you can
prove it to yourself by letting strings containing l ⋆-symbols and 2 |-symbols represent
multisets of size l (so for example ⋆⋆⋆|⋆ |⋆⋆ represents the multiset {0, 0, 0, 1, 2, 2}) and
counting the permutations of these symbols.)
So now we know that the number of truly independent elements of a fully symmetric l-

index tensor is (l+2)(l+1)/2. However, the tensor must also be traceless (the contraction
of any two of its indices must yield 0). Since the tensor is fully symmetric, it doesn’t
matter which two indices we pick. We’ll then need to subtract off the dimension of the
trace of the tensor, or 0 if the tensor has less than 2 indices and thus no way to compute
a trace. The trace of a fully symmetric tensor remains fully symmetric, and so we can
reuse the previous formula for the dimension of a fully symmetric tensor with two fewer
indices, and we get l(l − 1)/2. So the dimension of the space of fully symmetric tensors
is:

(l + 2)(l + 1)

2
− l(l − 1)

2
= 2l + 1

as expected. For l = 0, 1, note that we end up subtracting 0, which is consistent with
not being able to take a trace.

Proving that tensors transform under representations is simple: Given R ∈ SO(3),

Ti1...il → Ri1j1 . . . RiljlTj1...jl

This transformation is linear in T , therefore it constitutes a representation. It is
also clear that if T is fully symmetric, then its transformed version will be too, so
fully symmetric tensors are also representations. Finally, we note that a tensor trace
transforms like a tensor does:

Tkki3...il → Rkj1Rkj2Ri3j3 . . . RiljlTj1j2j3...jl = Ri3j3 . . . RiljlTkkj3...jl

9



This is why to get an irrep, our tensor has to be traceless: If it was not, its trace
would be a sub-representation. Anyway, by linearity, if the trace of a tensor is 0, the
trace of its transformed version will be too. Thus, fully-symmetric traceless tensors with
l indices transform under representations of SO(3).
The first four such representations are:
l dim tensor constraints name irrep symbol

0 1 T scalar D0

1 3 Ti vector D1

2 5 Tij Tii = 0, Tij = Tji symmetric traceless matrix D2

3 7 Tijk Tiij = 0, Tijk = Tjik = Tjki – D3

where we use Dl to refer to the irrep itself.
Proving that these representations are now truly irreducible and that there are no

remaining irreps besides the ones we can make from symmetric traceless tensors is not
central to this post, so we leave it as an optional exercise.

2.5 3d Hermite Polynomial Irreps

Let s = [1, 1, 1] so that s · n = n0 + n1 + n2. Then all the 3d Hermite polynomials
Hen with a given value of s · n live in the same eigenspace. This eigenspace transforms
according to a representation of SO(3), so we should be able to break it down into its
constituent irreps.
Define

Hi1···il(x) = Hen(x) where n =


∑l

a=1 [ia = 0]∑l
a=1 [ia = 1]∑l
a=1 [ia = 2]


(n counts the number of indices that are each of 0, 1, 2.) This object (which we’ll

show soon is a tensor) is fully symmetric and has l = s ·n indices. So each eigenspace is
associated with a particular l-index tensor Hi1...il .
If we recall the generating function for Hermite polynomials,

∞∑
n0=0

∞∑
n1=0

∞∑
n2=0

Hen(x)
tn0
0

n0!

tn1
1

n1!

tn2
2

n2!
= e−

1
2
t·tex·t

then we have:

Hi1···il(x) =
∂

∂ti1
. . .

∂

∂til
e−

1
2
t·tex·t

∣∣∣
t=0

Now let R ∈ SO(3) and we’ll see what happens when we rotate space:

Hi1···il(Rx) =
∂

∂ti1
. . .

∂

∂til
e−

1
2
t·te(Rx)·t

∣∣∣
t=0

10



=
∂

∂ti1
. . .

∂

∂til
e−

1
2
(Rt′)·(Rt′)e(Rx)·(Rt′)

∣∣∣
t′=0

where t = Rt′

=
∂

∂ti1
. . .

∂

∂til
e−

1
2
t′·t′ex·t

′
∣∣∣
t′=0

∂
∂ti

= Rij
∂
∂t′j

, so:

Hi1···il(Rx) = Ri1j1
∂

∂t′j1
. . . Riljl

∂

∂t′jl
e−

1
2
t′·t′ex·t

′
∣∣∣
t′=0

= Ri1j1 . . . RiljlHj1...jl(x)

From this, we see that H is a tensor, and therefore transforms under a representation
of SO(3). While H is fully symmetric, it is not traceless in general, and thus the
representation it transforms under might not be an irrep. So what is the representation
associated with a fully symmetric and not traceless tensor? Well, it’s the direct sum of
the representation of the trace and the traceless part:

rep(l) =

{
Dl if l < 2

Dl ⊕ rep(l − 2) otherwise

We expect that these should add up to (l+ 2)(l+ 1)/2 dimensions, the size of a fully
symmetric tensor and also the number of choices of n that satisfy s ·n = l. Here are the
first few representations of the eigenspaces:

s · n representation dimension

0 D0 1 = 1
1 D1 3 = 3
2 D2 ⊕D0 5 + 1 = 6
3 D3 ⊕D1 7 + 3 = 10
4 D4 ⊕D2 ⊕D0 9 + 5 + 1 = 15
5 D5 ⊕D3 ⊕D1 11 + 7 + 3 = 21

So far then, we’ve confirmed that eigenspaces do indeed correspond to representations
of SO(3) in this system. These representations can be further broken down into irreps.
One interesting thing to note is that because the Koopman operator is self-adjoint, its
eigenfunctions are orthogonal. In particular, this means that:

⟨ϕ, ψ⟩ = 0 = Eq [ϕ∗ψ]

for eigenfunctions ϕ, ψ with different eigenvalues. In the next section, we’ll look further
into covariances of equivariant functions.

11



3 Symmetry and Covariances

We’ll just be looking at unitary representations here, i.e. representations D where
Dg−1 = D†

g. This is the nicest class of representations, and is in some sense fully
sufficient for describing finite groups. (And even for many infinite groups, eg SO(3), in
practice we don’t need to use any non-unitary representations they may have.)
Let ϕ,ψ be some (vector-valued) functions that transform under the irreps Dϕ, Dψ of

our symmetry group G. We’ve specified that these functions are irrep-equivariant, but
nothing else about them. They need not be eigenfunctions. We’ll consider two cases:
First, the case where Dϕ ̸= Dψ, and then the case where Dϕ = Dψ.

3.1 When Dϕ ̸= Dψ

Firstly, let’s clarify that by saying the irreps are not equal, we mean that they are not
even isomorphic. They are truly different representations of G. Let A be some (possibly
rectangular) matrix so that we can take the product ϕ†Aψ and get a scalar. We’ll
compute the expected value:

⟨ϕ, Aψ⟩ = Eq
[
ϕ†Aψ

]
=

∫
q(X)dX ϕ†(X)Aψ(X)

Now because q is symmetric under the action of G, we can average over group elements
(replace this with a Haar-measure integral if the group is continuous) to get:

=

∫
q(X)dX

1

|G|
∑
g∈G

ϕ†(gX) A ψ(gX)

now we can apply the fact that the functions are representations:

=

∫
q(X)dX

1

|G|
∑
g∈G

ϕ†(X)Dϕ †
g A Dψ

g ψ(X)

=

∫
q(X)dX ϕ†(X)

 1

|G|
∑
g∈G

Dϕ †
g A Dψ

g

ψ(X)

By Schur’s lemma, this inner sum over group elements is 0, and thus, so is the whole
integral.

Eq
[
ϕ†Aψ

]
= 0

So the expected value of this sandwich is 0, regardless of the value of A. Now we’ll
take an outer product of the two functions to get a covariance matrix. (Computing a
covariance usually requires us to subtract the mean first, but here we don’t. TICA has
its own way to deal with functions that have non-zero mean, which will be described
later. We still write “covariance” instead of “expected outer product” because it’s less
clunky.) We can figure out what each element should be by making A all zeros except
for a single element that is set to 1.

12



Eq
[
ψϕ†

]
= 0

So we find no covariance between functions that transform under different irreps. (This
doesn’t necessarily mean they are independent, though!) Note that we didn’t need the
functions to be eigenfunctions for this to be true, just the fact that the irreps are different
is enough.

3.2 When Dϕ = Dψ

Firstly, let’s clarify that by saying the irreps are equal, we mean that they are precisely
equal, not just isomorphic. This will simplify the following derivation. Once again, let
A be any matrix that can be sandwiched between the irreps. This time, we know that
A must be square. We’ll compute:

⟨ϕ, Aψ⟩ = Eq
[
ϕ†Aψ

]
=

∫
q(X)dX ϕ†(X)Aψ(X)

as before, we average over group elements:

=

∫
q(X)dX

1

|G|
∑
g∈G

ϕ†(gX) A ψ(gX)

and apply the representations:

=

∫
q(X)dX

1

|G|
∑
g∈G

ϕ†(X)Dϕ †
g A Dψ

g ψ(X)

=

∫
q(X)dX ϕ†(X)

 1

|G|
∑
g∈G

Dϕ †
g A Dψ

g

ψ(X)

Now, the fact that the representations Dϕ, Dψ are actually exactly the same means
that Schur’s lemma tells us that:

1

|G|
∑
g∈G

Dϕ †
g A Dψ

g = I
TrA

Tr I
= I

TrA

dimDϕ

so we get:

Eq
[
ϕ†Aψ

]
=

TrA

dimDϕ

∫
q(X)dX ϕ†(X)ψ(X)

If we let A = I, then we get:

Eq
[
ϕ†ψ

]
=

∫
q(X)dX ϕ†(X)ψ(X) = Cϕψ

which is as expected. We assign this value the short name Cϕψ.

13



Now we’ll take an outer product of the two functions to get a covariance matrix. We
can figure out what each element should be by making A all zeros except for a single
element that is set to 1. If the non-zero element is on the diagonal we get trace 1,
otherwise trace 0. Thus, the resulting covariance matrix is:

Eq
[
ψϕ†

]
= I

1

dimDϕ

∫
q(X)dX ϕ†(X)ψ(X) = I

Cϕψ
dimDϕ

i.e. it is just a scaled copy of the identity matrix.

3.3 Symmetry and K

Now we’ll bring dynamics into the preceding discussion. Let’s try applying the Koopman
operator K to some function ψ(X) that transforms under an irrep Dψ. Before applying
any symmetry, we have:

Kψ(Xt) =

∫
p(Xt+∆t|Xt) dXt+∆t ψ(Xt+∆t)

and after applying a symmetry g, we have:

Kψ(gXt) =

∫
p(gXt+∆t|gXt) dXt+∆t ψ(gXt+∆t)

By the fact the the dynamics is unchanged under the symmetry group G, we get:

Kψ(gXt) =

∫
p(Xt+∆t|Xt) dXt+∆t ψ(gXt+∆t)

Now using the representation Dψ, we get:

KDψ
g ψ(X) =

∫
p(Xt+∆t|Xt) dXt+∆t D

ψ
g ψ(Xt+∆t) = Dψ

g Kψ(X)

This is a little different from our finding that Dg commutes with K. Dg acts on

functions, while Dψ
g is a simple matrix that only acts on finite-dimensional vectors.

Essentially what it means is that Kψ still transforms under the same irrep Dψ that ψ
originally transformed under. We’ve already seen how to find the covariance between two
irrep-transforming functions ϕ,ψ. But thanks to the above fact, applying the Koopman
operator to one of these functions results in an outcome that is basically the same!

Eq
[
Kψ ϕ†

]
=

{
0 if Dϕ ̸= Dψ

I
Cϕ,Kψ
dimDϕ

if Dϕ = Dψ

14



4 Symmetric TICA

4.1 How TICA Originally Worked

Recall that the procedure for TICA was to restrict our attention to some preselected
set of basis functions {ψj}. Then, we empirically estimate both lagged and non-lagged
covariances. The non-lagged covariances estimate is:

Cij ≈ ⟨ψi, ψj⟩

while the lagged covariances estimate is:

C∆t
ij ≈ ⟨ψi,Kψj⟩

From these two covariance matrices, it’s possible to compute a matrix K that is in
some sense the best approximation of the Koopman operator available on the given set
of basis functions. In particular, we perform a multivariable linear regression to find the
K that minimizes

Ep(Xt+∆t|Xt)q(Xt)

[
(ψ(Xt+∆t)−Kψ(Xt))

2
]

and the resulting K can be written in terms of the covariance matrices:

K =
(
C−1C∆t

)⊤
The “independent component analysis” part of this is that we do a spectral decompo-

sition on K. Here we have to be a little careful. The Koopman operator was self-adjoint
under a very particular inner product, an expectation under q. The spectral decompo-
sition is inner product dependent, and the usual computer routines assume the regular
dot product. So we have to perform the decomposition on K, but with an inner prod-
uct given by ⟨ϕ,ψ⟩ = ϕ†Cψ. Computationally, this is equivalent to decomposing the
“de-correlated” version of K, called Kdc, with the usual dot product:

Kdc = C−1/2 C⊤
∆t C

−1/2 = USU⊤

Using a de-correlated (sometimes called whitened) basis means that even applying a
linear transformation to our basis functions leaves the singular values produced by the
analysis invariant. And the basis functions of the de-correlated basis are orthonormal
under the equilibrium-distribution inner product.

4.2 Symmetric TICA

The modifications needed to perform TICA where there’s a symmetry are actually pretty
small. They are:

� For each irrep, we have a set of basis functions that transform under that irrep,
which we’ll call an “irrep block”.

15



� Covariances between functions from different irrep blocks are identically 0, so we
might as well only measure covariances between functions in the same block. We
have an entirely separate covariance matrix for each irrep block.

� For functions from the same irrep block, covariances just look like a scaled identity
matrix. We can take advantage of this by computing Cϕψ where ϕ,ψ are functions
that transform under the same irrep. Then we know the covariance matrix between
them is given by ICϕψ/ dimDϕ. Really, we just need to store the Cϕψ, as this
compresses all the relevant covariance information that it’s possible for a symmetric
system to have.

� Since the overall covariance matrix is block-diagonal in terms of the irrep blocks,

we can compute products like
(
C−1C∆t

)⊤
and C−1/2 C⊤

∆t C
−1/2 separately for

each irrep block. We can also compute matrix decompositions separately for each
irrep block. When we get eigenvalues out of TICA, they have degeneracy equal to
the dimension of the irrep whose block they came from. So just like the Koopman
operator itself, TICA will spit out duplicate eigenvalues when symmetry is present.

� When inverting and multiplying to compute K or Kdc as described in the previ-
ous step, we can just treat everything that looks like ICϕψ/ dimDϕ as equalling
just the number Cϕψ. This makes our computations less redundant and removes
opportunity for numerical errors. We can ignore the I because it just acts like a
1, and add it back at the end. We can even ignore the dimDϕ, since the factor of
1/dimDϕ from C∆t and the factor of dimDϕ from C−1 cancel out.

That might all sound pretty abstract, so we’ll look at a concrete example.

4.3 Symmetric TICA: Example

Figure 5: An example trajectory for our dimer system. Only the projection of the 3d
position of each particle to the x-axis is shown.

As our example, we’ll take a system that obeys detailed balance and has SO(3) sym-
metry. It has two particles, connected by a harmonic spring, and they occupy a quartic

16



sombrero potential. The dynamics is Brownian (so it obeys detailed balance) and the
overall potential is:

U(r1, r2) =
1

4

(
r21 − 1

)2
+

1

4

(
r22 − 1

)2
+

1

2
(r1 − r2)

2

We generate a bunch of trajectory data with a lag time of ∆t = 0.2 and this can be
used in our symmetric TICA analysis. An example of what this data looks like is shown
in figure 5. To ensure we get a symmetric time-lagged covariance matrix, we duplicate
our data set so that both the forwards and backwards version of each pair (Xt,Xt+∆t)
is included. (That step should be skipped if we’re not totally sure the system obeys
detailed balance.)
TICA needs a set of basis functions, and symmetric TICA needs these functions to

be irreps. We’ll take our basis to be polynomials in the system coordinates up to degree
2. These can certainly be divided into irreps, the ones we’ll need are D0, D1, D2. The
following table lists them, categorized by irrep block:

irrep block polynomial functions dim

D0 1, r21, r
2
2, r1 · r2 4× 1 = 4

D1 r1, r2, r1 × r2 3× 3 = 9
D2 sst(r1 ⊗ r1), sst(r1 ⊗ r2), sst(r2 ⊗ r2) 3× 5 = 15

where sst means turning a matrix into an D2 irrep by symmetrizing it and subtracting
the trace. We can check that the number of dimensions matches. The system has 6
coordinates, so there is 1 degree-0 polynomial, 6 degree-1 polynomials, and 21 degree-2
polynomials in these coordinates. This totals 28, which matches the 4+9+15 dimensions
we see in the table.
The trajectory data is fed into these functions to produce a time-series. Then we can

compute stationary and lagged covariances to get corresponding covariance matrices.
From these, we compute K,Kdc. See figure 6, where we can see that the estimate of
Kdc has less statistical noise when we use symmetric TICA. The image at the start of
this document shows the same thing for K.

Figure 7 shows Kdc in the non-redundant representation that we actually use to do
computations in symmetric TICA. There are separate Kdc matrices for each irrep block.
Also note that the D1 irrep block’s matrix, for example, only has entries for each pair
of the 3 vector basis functions, not for each pair of the 9 elements of the 3 vector basis
functions.
Now the final step in TICA is finding spectral decomposition of Kdc.6 This produces

a bunch of eigenvalues. The D0 irrep block should have 4 eigenvalues7 of multiplicity
1, the D1 irrep block should have 3 eigenvalues of multiplicity 3, and the D2 irrep
block should have 3 eigenvalues of multiplicity 5. In symmetric TICA, we compute
eigenvalues for each of the non-redundant Kdc matrices shown in figure 7, and then just
set the multiplicity equal to the dimension of its irrep.

6The matrix Kdc should be symmetric in principle (we symmetrized our data so that C∆t would be
symmetric). Due to numerical errors, it’s not exactly symmetric in the computer’s memory, so we
use a singular-value-decomposition routine and call the resulting singular values our “eigenvalues”.

7one of which is 1, associated with the constant eigenfunction

17



(A) (B)

Figure 6: (A) shows Kdc where we compute covariances of basis functions without any

consideration for symmetry. (B) shows the Kdc produced by symmetric TICA.
In both matrices, the thick lines separate irrep blocks, while the thin lines
separate the individual equivariant functions in each block.

Figure 8 shows the results of this, for both raw TICA, and symmetric TICA. The
trivial 1 eigenvalue is the first, followed by a multiplicity-3 eigenvalue, associated with
a D1 equivariant eigenfunction. We can see a matching group of 3 eigenvalues from the
raw TICA analysis, though the degeneracy is slightly split due to statistical errors. The
next highest eigenvalue produced by symmetric TICA is of multiplicity 5 (arising from
some D2 equivariant function), and so on. There are no more clear groups of eigenvalues
produced by regular TICA, perhaps because the spacing has become too fine. However,
the general trends of the spectra match. From symmetric TICA, we get a less-noisy,
symmetry-respecting spectrum.

One other interesting thing to note is that while the top eigenvalue of 1 is always
from the trivial representation, in this case the next 3 distinct eigenvalues are from the
D1, D2, D1 representations, in that order, and only the next distinct eigenvalue after that
is from the D0 representation again. This author has observed that some works tend
to handle symmetry by only choosing invariant basis functions for TICA. However, this
example shows that sometimes the slowest-changing function is actually an equivariant
function. We also saw this with the 3d Ornstein-Uhlenbeck process, where the slowest
non-trivial mode (Hi with l = s · n = 1) was also D1 equivariant.

4.4 Mean-Subtraction and the ψ1(X) = 1 Eigenfunction

One thing to note here is that we should always include the constant ψ1(X) = 1 function
in our basis. It is always a Koopman eigenfunction, regardless of the physical system.

18



Figure 7: The data contained in symmetric TICA’s Kdc matrix, shown in figure 6 (B),
can be compressed into a separate matrix for each irrep block. The dimension
of each of these is equal to the number of equivariant functions in its irrep
block. It doesn’t matter how high-dimensional the irrep itself is.

The matrix K produced by the linear regression step of TICA will have a [1, 0, 0, 0 . . .]
row that it uses to estimate E [ψ1(Xt+∆t)]. For any other basis function ϕ, we have
⟨ψ1, ϕ⟩ = Eq [ϕ], the mean value of ϕ. If some other functions have non-zero mean, this
is corrected for by including ψ1 in the basis.
Some other formulations of TICA instead just subtract the mean from all basis func-

tions before performing their analysis. We feel it is often nicer to explicitly include it as
one of the basis functions, however. For example, it’s the easiest way to do symmetric
TICA.
ψ1 transforms under the trivial irrep (the one-dimensional irrep where Dg = 1 for all g;

it exists for any possible group G). This tells us that we must put ψ1 into the trivial irrep
block. So all the invariant functions (i.e. the ones that are trivial-irrep-equivariant) will
have their mean corrected for. And then because of the rule that there are no correlations
between different irrep blocks, any nontrivial-irrep-equivariant functions will not have
their mean corrected for. This is fine, however, because group theory tells us that such
functions should have a mean of exactly 0 anyway.

4.5 Symmetric VAMP-score

Now computing a symmetric VAMP-score is not much harder to do than symmetric
TICA. The first step here is to perform symmetric TICA as usual on the functions
we’re trying to score. So we run our trajectories through the functions and compute
(symmetry-aware) covariances as usual. There are several different VAMP scores, but
eg. the VAMP-2 score can be computed as:

VAMP2 = Tr
[
Kdc ⊤ Kdc

]
Just like regular TICA, symmetric TICA’s computation ofKdc is differentiable, and so

there is no problem propagating gradients backwards through this score. The functions

19



Figure 8: The spectrum (with eigenvalues simply put into sorted order) produced by
symmetric TICA, overlaid onto the spectrum produced by regular TICA.

used as input must be equivariant, and so if training a VAMP-net, one must construct
an equivariant neural network to supply them. The python library e3nn8 provides a
framework for this for 3d symmetry groups like SO(3) or O(3).

4.6 Other Useful Symmetry Groups

SO(2) aka U(1) aka Periodic Translation Group

This group is abelian so all irreps are 1d. We can write elements of this group as rotations
through an angle of θ. There’s an irrep Dk for even integer k ∈ Z, given by:

Dk
θ = eikθ

The trivial irrep is D0.

Lattice Translations

If we have an n dimensional crystal lattice whose points are given by AZn, then the
group of lattice translations is also abelian and so has 1d irreps. Let k be a wavevector
in Rn. Then the irreps are given by:

8Mario Geiger and Tess Smidt, e3nn: Euclidean Neural Networks. arxiv.org/abs/2207.09453

20

https://e3nn.org/
https://arxiv.org/abs/2207.09453


Dk
a = eik·a

where a is a lattice translation vector. There is some redundancy in the definition of
k (which can be removed by specifying that it is contained within the Brillouin zone),
where we say that k and k′ give equivalent representations iff 1

2πA
⊤(k− k′) ∈ Zn. The

trivial irrep is D0.

Cyclic Groups Zn

The cyclic group Zn is finite and abelian, and it has a finite set of irreps. Let k be an
integer. Then the irreps are given by:

Dk
m = e2πi km/n

where m is a group element written as an integer mod n. The is some redundancy
in the definition of k, where we say that k and k′ given equivalent representations iff
k = k′ mod n. The trivial irrep is D0.

The Group SU(2)

SU(2) double-covers SO(3), and so the irreps for this group include the irreps for SO(3),
except there are more of them: We are now allowed half-integer l along with integer l.
If U ∈ SU(2), then:

D
1/2
U = U

and we can build up larger irreps by taking tensor products of this with itself and
decomposing the resulting representations into their irreducible parts.

Direct Products of Multiple Groups

What about if we have periodic boundary conditions on some 3d system? The symmetry
group for this can be written as U(1)×U(1)×U(1). How do we get the irreps? We use
the rule for direct products of irreps: If DG is an irrep of G and DH is an irrep of H
then DG⊗DH is an irrep of G×H, and all irreps of G×H can be written in this form.
To make sure the notation is clear: If u is DG-equivariant and v is DH -equivariant, and
g ∈ G and h ∈ H, then:(

DG ⊗DH
)
(g,h)

(u⊗ v) = (DG
g u)⊗ (DH

h v)

This applies regardless of whether G,H are abelian or not. The trivial irrep is the
tensor product of the trivial irreps of G and H.

Code Link:

github.com/pb1729/symmetric-tica

21

https://github.com/pb1729/symmetric-tica


Apprendix: The Hermite Polynomials

The 1d Hermite Polynomials

The 1d Hermite polynomials, denoted Hen(x) for n ∈ N = {0, 1, 2, 3 . . .} can be defined
using a generating function as follows:

∞∑
n=0

Hen(x)
tn

n!
= e−

1
2
t2ext

The Hermite polynomials have many interesting properties, but the one that is relevant
for our purposes here is that they satisfy the Hermite differential equation, namely:(

−x d
dx

+
d2

dx2

)
Hen(x) = −nHen(x)

We can show this using the generating function definition as follows:

∞∑
n=0

(
−x ∂

∂x
+

∂2

∂x2

)
Hen(x)

tn

n!
=

(
−x ∂

∂x
+

∂2

∂x2

)
e−t

2/2ext

=
(
−xt+ t2

)
e−t

2/2ext = −t ∂
∂t
e−t

2/2ext

= −
∞∑
n=0

Hen(x)t
∂

∂t

tn

n!
= −

∞∑
n=0

Hen(x)n
tn

n!

Therefore: (
−x ∂

∂x
+

∂2

∂x2

)
Hen(x) = −nHen(x)

as expected.

The 3d Hermite Polynomials

The Hermite polynomials can be generalized to a 3d version using the following gener-
ating function:

∞∑
n0=0

∞∑
n1=0

∞∑
n2=0

Hen(x)
tn0
0

n0!

tn1
1

n1!

tn2
2

n2!
= e−

1
2
t·tex·t

where [n0, n1, n2] = n ∈ N3. The resulting polynomials are just products of any 3
chosen 1d Hermite polynomials. By a similar argument to above, we can check that a
given 3d Hermite polynomial satisfies a 3d version of the Hermite differential equation:

∞∑
n0=0

∞∑
n1=0

∞∑
n2=0

(
−x · ∇x +∇2

x

)
Hen(x)

tn0
0

n0!

tn1
1

n1!

tn2
2

n2!
=

(
−x · ∇x +∇2

x

)
e−

1
2
t·tex·t

22



= (−x · t+ t · t) e−
1
2
t·tex·t = −t · ∇te

− 1
2
t·tex·t

= −
∞∑

n0=0

∞∑
n1=0

∞∑
n2=0

Hen(x) (t · ∇t)
tn0
0

n0!

tn1
1

n1!

tn2
2

n2!

= −
∞∑

n0=0

∞∑
n1=0

∞∑
n2=0

Hen(x) (n0 + n1 + n2)
tn0
0

n0!

tn1
1

n1!

tn2
2

n2!

Therefore: (
−x · ∇x +∇2

x

)
Hen(x) = − (n0 + n1 + n2)Hen(x)

as expected.

23


	Introduction
	The Koopman Operator
	VAMP-nets and TICA
	Symmetry
	Eigenspaces and Symmetry
	Plan for the rest of this post

	Koopman Eigenfunctions of the Ornstein-Uhlenbeck Process
	Infinitesimal Generator
	Eigenfunctions
	3d Ornstein-Uhlenbeck Process
	Representation Theory of SO(3)
	3d Hermite Polynomial Irreps

	Symmetry and Covariances
	When D=D
	When D= D
	Symmetry and K

	Symmetric TICA
	How TICA Originally Worked
	Symmetric TICA
	Symmetric TICA: Example
	Mean-Subtraction and the 1(X) = 1 Eigenfunction
	Symmetric VAMP-score
	Other Useful Symmetry Groups


